
Daniel Graça
Professor associado com agregação
Faculdade de Ciências e Tecnologia
Centro de Estudos e de Desenvolvimento da Matemática no Ensino Superior
Subsistema
Docentes Universitário
Unidade ID
Centro de Estudos e de Desenvolvimento da Matemática no Ensino Superior
Unidade ID externa
Instituto de Telecomunicações (IT)
Regime
Exclusividade
Vínculo
CT em Funções Públicas por tempo indeterminado
Daniel Graça. É Professor Auxiliar no(a) Universidade do Algarve Faculdade de Ciências e Tecnologia e Investigador no(a) Instituto de Telecomunicações. Publicou 26 artigos em revistas especializadas. Possui 2 capítulo(s) de livros. Recebeu 5 prémio(s) e/ou homenagens. Atua na(s) área(s) de Ciências Exatas com ênfase em Matemática. No seu currículo Ciência Vitae os termos mais frequentes na contextualização da produção científica, tecnológica e artístico-cultural são: Computational models which use real numbers; Computation with dynamical systems; Computability theory; Computational complexity; .
Projetos
Projetos
2017/04/01 - 2022/03/31. Computing with Infinite Data, H2020: MSCA-RISE - Research and Innovation Staff Exchange. Investigador. Universidade do Algarve.
Produções
Daniel S. Graça; Ning Zhong. 2022. "Computing the exact number of periodic orbits for planar flows". Transactions of the American Mathematical Society. https://doi.org/10.1090/tran/8644
Graça, Daniel; Ning Zhong. 2021. "Computability of Differential Equations". Em Handbook of Computability and Complexity in Analysis, editado por Vasco Brattka; Peter Hertling. Springer. https://www.springer.com/gp/book/9783030592332
2021. "The set of hyperbolic equilibria and of invertible zeros on the unit ball is computable". Theoretical Computer Science, 895: 48-54. https://doi.org/10.1016/j.tcs.2021.09.028
Daniel S. Graça; Ning Zhong. 2021. "Computability of Limit Sets for Two-Dimensional Flows". 494-503. Springer International Publishing. https://doi.org/10.1007/978-3-030-80049-9_48
Daniel Graça; Cristóbal Rojas; Ning Zhong. 2018. "Computing geometric Lorenz attractors with arbitrary precision". Transactions of the American Mathematical Society, 370 (-): 2955-2970. https://doi.org/10.1090/tran/7228
Daniel S. Graça; Ning Zhong. 2018. Computability of Ordinary Differential Equations. https://doi.org/10.1007/978-3-319-94418-0_21
Olivier Bournez; Daniel Graça; Amaury Pouly. 2017. "Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length". Journal of the ACM, 64 (6): Article no. 38-Article no. 38. https://doi.org/10.1145/3127496
Olivier Bournez; Daniel Graça; Amaury Pouly. 2017. "On the Functions Generated by the General Purpose Analog Computer". Information and Computation, To appear (To appear): To appear-To appear. https://doi.org/10.1016/j.ic.2017.09.015
Olivier Bournez; Daniel Graça; Amaury Pouly. 2016. "Computing with polynomial ordinary differential equations". Journal of Complexity, 36 (-): 106-140. https://doi.org/10.1016/j.jco.2016.05.002
Amaury Pouly; Daniel Graça. 2016. "Computational complexity of solving polynomial differential equations over unbounded domains". Theoretical Computer Science, 626 (2): 67-82. https://doi.org/10.1016/j.tcs.2016.02.002
Graça, Daniel. 2016. "Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length - The General Purpose Analog Computer and Computable Analysis are two efficiently equivalent models of computations". https://doi.org/10.4230/LIPIcs.ICALP.2016.109
Daniel Graça; Ning Zhong. 2015. "An analytic system with a computable hyperbolic sink whose basin of attraction is non-computable". Theory of Computing Systems, 57 (2): 478-520. https://doi.org/10.1007/s00224-015-9609-5
Graça, Daniel. 2015. "Rigorous numerical computation of polynomial differential equations over unbounded domains". 469-473. Vol. 9582. https://doi.org/10.1007/978-3-319-32859-1
Graça, Daniel. 2013. "Turing machines can be efficiently simulated by the General Purpose Analog Computer". https://doi.org/10.1007/978-3-642-38236-9_16
Bournez, O.; Graça, D.S.; Pouly, A.; Zhong, N.. 2013. "Computability and computational complexity of the evolution of nonlinear dynamical systems". Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7921 LNCS: 12-21. https://doi.org/10.1007/978-3-642-39053-1_2
Bournez, O.; Graça, D.S.; Hainry, E.. 2013. "Computation with perturbed dynamical systems". Journal of Computer and System Sciences, 79 (5): 714-724. https://doi.org/10.1016/j.jcss.2013.01.025
Bournez, O.; Graça, D.S.; Pouly, A.. 2012. "On the complexity of solving initial value problems". Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 115-121. https://doi.org/10.1145/2442829.2442849
Graça, D.S.; Zhong, N.; Buescu, J.. 2012. "Computability, noncomputability, and hyperbolic systems". Applied Mathematics and Computation, 219 (6): 3039-3054. https://doi.org/10.1016/j.amc.2012.09.031
Graa, D.S.; Zhong, N.; Dumas, H.S.. 2012. "The connection between computability of a nonlinear problem and its linearization: The HartmanGrobman theorem revisited". Theoretical Computer Science, 457: 101-110. https://doi.org/10.1016/j.tcs.2012.07.013
Graça, D.S.. 2012. "Noncomputability, unpredictability, and financial markets". Complexity, 17 (6): 24-30. https://doi.org/10.1002/cplx.21395
Graça, D.; Zhong, N.. 2011. "Computability in planar dynamical systems". Natural Computing, 10 (4): 1295-1312. https://doi.org/10.1007/s11047-010-9230-0
Bournez, O.; Graça, D.S.; Pouly, A.. 2011. "Solving analytic differential equations in polynomial time over unbounded domains". Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6907 LNCS: 170-181. https://doi.org/10.1007/978-3-642-22993-0_18
Graça, Daniel. 2011. "Computability and Dynamical Systems". https://doi.org/10.1007/978-3-642-11456-4_11
Bournez, O.; Graça, D.S.; Hainry, E.. 2010. "Robust computations with dynamical systems". Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6281 LNCS: 198-208. https://doi.org/10.1007/978-3-642-15155-2_19
Graça, D.S.; Zhong, N.. 2009. "Computing domains of attraction for planar dynamics". Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5715 LNCS: 179-190. https://doi.org/10.1007/978-3-642-03745-0_22
Graa, D.S.; Buescu, J.; Campagnolo, M.L.. 2009. "Computational bounds on polynomial differential equations". Applied Mathematics and Computation, 215 (4): 1375-1385. https://doi.org/10.1016/j.amc.2009.04.055
Collins, P.; Graça, D.S.. 2009. "Effective computability of solutions of differential inclusions the ten thousand monkeys approach". Journal of Universal Computer Science, 15 (6): 1162-1185. http://www.scopus.com/inward/record.url?eid=2-s2.0-67650731821&partnerID=MN8TOARS
Graça, D.S.; Zhong, N.; Buescu, J.. 2009. "Computability, noncomputability and undecidability of maximal intervals of IVPS". Transactions of the American Mathematical Society, 361 (6): 2913-2927. https://doi.org/10.1090/S0002-9947-09-04929-0
Collins, P.; Graça, D.S.. 2008. "Effective Computability of Solutions of Ordinary Differential Equations The Thousand Monkeys Approach". Electronic Notes in Theoretical Computer Science, 221 (C): 103-114. https://doi.org/10.1016/j.entcs.2008.12.010
Graça, D.S.; Buescu, J.; Campagnolo, M.L.. 2008. "Boundedness of the Domain of Definition is Undecidable for Polynomial ODEs". Electronic Notes in Theoretical Computer Science, 202 (C): 49-57. https://doi.org/10.1016/j.entcs.2008.03.007
Graça, D.S.; Campagnolo, M.L.; Buescu, J.. 2008. "Computability with polynomial differential equations". Advances in Applied Mathematics, 40 (3): 330-349. https://doi.org/10.1016/j.aam.2007.02.003
Bournez, O.; Campagnolo, M.L.; Graça, D.S.; Hainry, E.. 2007. "Polynomial differential equations compute all real computable functions on computable compact intervals". Journal of Complexity, 23 (3): 317-335. https://doi.org/10.1016/j.jco.2006.12.005
Bournez, O.; Campagnolo, M.L.; Graça, D.S.; Hainry, E.. 2006. "The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation". Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3959 LNCS: 631-643. https://doi.org/10.1007/11750321_60
Graça, D.S.; Campagnolo, M.L.; Buescu, J.. 2005. "Robust simulations of Turing machines with analytic maps and flows". Lecture Notes in Computer Science, 3526: 169-179. http://www.scopus.com/inward/record.url?eid=2-s2.0-26444476497&partnerID=MN8TOARS
Graça, D.S.. 2004. "Some recent developments on Shannon's General Purpose Analog Computer". Mathematical Logic Quarterly, 50 (4-5): 473-485. https://doi.org/10.1002/malq.200310113